banner



Elements Of Discrete Mathematics Pdf

Susanna S. Epp / ���� ������� - Discrete Mathematics with Applications / ���������� ���������� � �� ���������� [2020, PDF, ENG]

��������:  1

�������� ����� � ������� » ������, ������������ � ���������� ����� » ����������

����: 12 ��� 2 ������

���������: 214


gridl · 10-���-19 15:11 (2 ���� 8 ������� �����)

Discrete Mathematics with Applications / ���������� ���������� � �� ����������
��� �������: 2020
�����: Susanna S. Epp / ���� �������
���� ��� ��������: Discrete Mathematics
������������: Cengage Learning, Inc
ISBN: 978-1337694193
����: ����������
������: PDF
��������: ������������ ����� ��� ����� (eBook)
������������� ����������: ���
���������� �������: 1057
��������: ���������� ���������� � ������������, 5-� �������, ��������� �������, ����������� ������� � �������� � ��������� � ������������ ������� ������ ��� ������������ ���� � ������ ���������� �������� ������ ������������� ����. ����� ������� ��� ������������ �� ������ �������� ���� ���������� ����������, �� � �����������, ������� � ������ �������������� �����. �������� ��������� ����������� ���������� �������, ������ ���� ������ � ��������������. ������ ����� �������, ��� ���������� ����� � �������� �����������, ������ ����������, ����������� ��������, ������������, ��������, ������������ � �������������, �������� ������������, ��� ���� ���������� ���������� ����� � ������ ����������� ����� � ������� � �������� �� ���������.
--------------
DISCRETE MATHEMATICS WITH APPLICATIONS, 5th Edition, explains complex, abstract concepts with clarity and precision and provides a strong foundation for computer science and upper-level mathematics courses of the computer age. Author Susanna Epp presents not only the major themes of discrete mathematics, but also the reasoning that underlies mathematical thought. Students develop the ability to think abstractly as they study the ideas of logic and proof. While learning about such concepts as logic circuits and computer addition, algorithm analysis, recursive thinking, computability, automata, cryptography and combinatorics, students discover that the ideas of discrete mathematics underlie and are essential to today's science and technology.

������� �������

����������

Speaking Mathematically 1
Variables 1
Using Variables in Mathematical Discourse; Introduction to Universal, Existential,
and Conditional Statements
The Language of Sets 6
The Set-Roster and Set-Builder Notations; Subsets; Cartesian Products; Strings
The Language of Relations and Functions 15
Definition of a Relation from One Set to Another; Arrow Diagram of a Relation;
Definition of Function; Function Machines; Equality of Functions
The Language of Graphs 24
Definition and Representation of Graphs and Directed Graphs; Degree of a Vertex;
Examples of Graphs Including a Graph Coloring Application
The Logic of Compound Statements 37
Logical Form and Logical Equivalence 37
Statements; Compound Statements; Truth Values; Evaluating the Truth of More General
Compound Statements; Logical Equivalence; Tautologies and Contradictions; Summary
of Logical Equivalences
Conditional Statements 53
Logical Equivalences Involving S; Representation of If-Then As Or; The Negation of
a Conditional Statement; The Contrapositive of a Conditional Statement; The Converse
and Inverse of a Conditional Statement; Only If and the Biconditional; Necessary and
Sufficient Conditions; Remarks
Valid and Invalid Arguments 66
Modus Ponens and Modus Tollens; Additional Valid Argument Forms: Rules of
Inference; Fallacies; Contradictions and Valid Arguments; Summary of Rules of Inference
Application: Digital Logic Circuits 79
Black Boxes and Gates; The Input/Output Table for a Circuit; The Boolean Expression
Corresponding to a Circuit; The Circuit Corresponding to a Boolean Expression; Finding
a Circuit That Corresponds to a Given Input/Output Table; Simplifying Combinational
Circuits; NAND and NOR Gates
Application: Number Systems and Circuits for Addition 93
Binary Representation of Numbers; Binary Addition and Subtraction; Circuits for
Computer Addition; Two�s Complements and the Computer Representation of Negative
Integers; 8-Bit Representation of a Number; Computer Addition with Negative Integers;
Hexadecimal Notation
the Logic of Quantified statements 108
Predicates and Quantified Statements I I08
The Universal Quantifier: 5; The Existential Quantifier: E; Formal versus Informal
Language; Universal Conditional Statements; Equivalent Forms of Universal and
Existential Statements; Bound Variables and Scope; Implicit Quantification; Tarski�s
World
Predicates and Quantified Statements II 122
Negations of Quantified Statements; Negations of Universal Conditional Statements;
The Relation among 5, E, ` , and ~ ; Vacuous Truth of Universal Statements; Variants of
Universal Conditional Statements; Necessary and Sufficient Conditions, Only If
Statements with Multiple Quantifiers 131
Translating from Informal to Formal Language; Ambiguous Language; Negations of
Multiply-Quantified Statements; Order of Quantifiers; Formal Logical Notation; Prolog
Arguments with Quantified Statements 146
Universal Modus Ponens; Use of Universal Modus Ponens in a Proof; Universal Modus
Tollens; Proving Validity of Arguments with Quantified Statements; Using Diagrams to
Test for Validity; Creating Additional Forms of Argument; Remark on the Converse and
Inverse Errors
elementary Number theory and methods
of Proof 160
Direct Proof and Counterexample I: Introduction 161
Definitions; Proving Existential Statements; Disproving Universal Statements by
Counterexample; Proving Universal Statements; Generalizing from the Generic
Particular; Method of Direct Proof; Existential Instantiation; Getting Proofs Started;
Examples
Direct Proof and Counterexample II: Writing Advice 173
Writing Proofs of Universal Statements; Common Mistakes; Examples; Showing That an
Existential Statement Is False; Conjecture, Proof, and Disproof
Direct Proof and Counterexample III: Rational Numbers 183
More on Generalizing from the Generic Particular; Proving Properties of Rational
Numbers; Deriving New Mathematics from Old
Direct Proof and Counterexample IV: Divisibility 190
Proving Properties of Divisibility; Counterexamples and Divisibility; The Unique
Factorization of Integers Theorem
Direct Proof and Counterexample V: Division into Cases and the
Quotient-Remainder Theorem 200
Discussion of the Quotient-Remainder Theorem and Examples; div and mod; Alternative
Representations of Integers and Applications to Number Theory; Absolute Value and the
Triangle Inequality
Direct Proof and Counterexample VI: Floor and Ceiling 211
Definition and Basic Properties; The Floor of ny2
Indirect Argument: Contradiction and Contraposition 218
Proof by Contradiction; Argument by Contraposition; Relation between Proof by
Contradiction and Proof by Contraposition; Proof as a Problem-Solving Tool
Indirect Argument: Two Famous Theorems 228
The Irrationality of Ï 2; Are There Infinitely Many Prime Numbers?; When to Use
Indirect Proof; Open Questions in Number Theory
Application: The handshake Theorem 235
The Total Degree of a Graph; The Handshake Theorem and Consequences; Applications;
Simple Graphs; Complete Graphs; Bipartite Graphs
Application: Algorithms 244
An Algorithmic Language; A Notation for Algorithms; Trace Tables; The Division
Algorithm; The Euclidean Algorithm
sequences, mathematical induction,
and recursion 258
Sequences 258
Explicit Formulas for Sequences; Summation Notation; Product Notation; Properties
of Summations and Products; Change of Variable; Factorial and n Choose r Notation;
Sequences in Computer Programming; Application: Algorithm to Convert from Base 10
to Base 2 Using Repeated Division by 2
Mathematical Induction I: Proving Formulas 275
Principle of Mathematical Induction; Sum of the First n Integers; Proving an Equality;
Deducing Additional Formulas; Sum of a Geometric Sequence
Mathematical Induction II: Applications 289
Comparison of Mathematical Induction and Inductive Reasoning; Proving Divisibility
Properties; Proving Inequalities; Trominoes and Other Applications
Strong Mathematical Induction and the Well-Ordering
Principle for the Integers 301
Strong Mathematical Induction; The Well-Ordering Principle for the Integers; Binary
Representation of Integers and Other Applications
Application: Correctness of Algorithms 314
Assertions; Loop Invariants; Correctness of the Division Algorithm; Correctness of the
Euclidean Theorem
Defining Sequences Recursively 325
Examples of Recursively Defined Sequences; Recursive Definitions of Sum and Product
Solving Recurrence Relations by Iteration 340
The Method of Iteration; Using Formulas to Simplify Solutions Obtained by Iteration;
Checking the Correctness of a Formula by Mathematical Induction; Discovering That an
Explicit Formula Is Incorrect
Second-Order Linear homogeneous Recurrence Relations
with Constant Coefficients 352
Derivation of a Technique for Solving These Relations; The Distinct-Roots Case; The
Single-Root Case
General Recursive Definitions and Structural Induction 364
Recursively Defined Sets; Recursive Definitions for Boolean Expressions, Strings, and
Parenthesis Structures; Using Structural Induction to Prove Properties about Recursively
Defined Sets; Recursive Functions
set theory 377
Set Theory: Definitions and the Element Method of Proof 377
Subsets: Introduction to Proof and Disproof for Sets; Set Equality; Venn Diagrams;
Operations on Sets; The Empty Set; Partitions of Sets; Power Sets; An Algorithm to
Check Whether One Set Is a Subset of Another (Optional)
Properties of Sets 391
Set Identities; Proving Subset Relations and Set Equality; Proving That a Set Is the
Empty Set
Disproofs and Algebraic Proofs 407
Disproving an Alleged Set Property; Problem-Solving Strategy; The Number of Subsets
of a Set; �Algebraic� Proofs of Set Identities
Boolean Algebras, Russell�s Paradox, and the halting Problem 414
Boolean Algebras: Definition and Properties; Russell�s Paradox; The Halting Problem
Properties of Functions 425
Functions Defined on General Sets 425
Dynamic Function Terminology; Equality of Functions; Additional Examples of
Functions; Boolean Functions; Checking Whether a Function Is Well Defined; Functions
Acting on Sets
One-to-One, Onto, and Inverse Functions 439
One-to-One Functions; One-to-One Functions on Infinite Sets; Application: Hash
Functions and Cryptographic Hash Functions; Onto Functions; Onto Functions on
Infinite Sets; Relations between Exponential and Logarithmic Functions; One-to-One
Correspondences; Inverse Functions
Composition of Functions 461
Definition and Examples; Composition of One-to-One Functions; Composition of Onto
Functions
Cardinality with Applications to Computability 473
Definition of Cardinal Equivalence; Countable Sets; The Search for Larger Infinities: The
Cantor Diagonalization Process; Application: Cardinality and Computability
Properties of relations 487
Relations on Sets 487
Additional Examples of Relations; The Inverse of a Relation; Directed Graph of a
Relation; N-ary Relations and Relational Databases
Reflexivity, Symmetry, and Transitivity 495
Reflexive, Symmetric, and Transitive Properties; Properties of Relations on Infinite Sets;
The Transitive Closure of a Relation
Equivalence Relations 505
The Relation Induced by a Partition; Definition of an Equivalence Relation; Equivalence
Classes of an Equivalence Relation
Modular Arithmetic with Applications to Cryptography 524
Properties of Congruence Modulo n; Modular Arithmetic; Extending the Euclidean
Algorithm; Finding an Inverse Modulo n; RSA Cryptography; Euclid�s Lemma; Fermat�s
Little Theorem; Why Does the RSA Cipher Work?; Message Authentication; Additional
Remarks on Number Theory and Cryptography
Partial Order Relations 546
Antisymmetry; Partial Order Relations; Lexicographic Order; Hasse Diagrams; Partially
and Totally Ordered Sets; Topological Sorting; An Application; PERT and CPM
counting and Probability 564
Introduction to Probability 564
Definition of Sample Space and Event; Probability in the Equally Likely Case; Counting
the Elements of Lists, Sublists, and One-Dimensional Arrays
Possibility Trees and the Multiplication Rule 573
Possibility Trees; The Multiplication Rule; When the Multiplication Rule Is Difficult or
Impossible to Apply; Permutations; Permutations of Selected Elements
Counting Elements of Disjoint Sets: The Addition Rule 589
The Addition Rule; The Difference Rule; The Inclusion/Exclusion Rule
The Pigeonhole Principle 604
Statement and Discussion of the Principle; Applications; Decimal Expansions of
Fractions; Generalized Pigeonhole Principle; Proof of the Pigeonhole Principle
Counting Subsets of a Set: Combinations 617
r-Combinations; Ordered and Unordered Selections; Relation between Permutations
and Combinations; Permutation of a Set with Repeated Elements; Some Advice about
Counting; The Number of Partitions of a Set into r Subsets
r-Combinations with Repetition Allowed 634
Multisets and How to Count Them; Which Formula to Use?
Pascal�s Formula and the Binomial Theorem 642
Combinatorial Formulas; Pascal�s Triangle; Algebraic and Combinatorial Proofs of
Pascal�s Formula; The Binomial Theorem and Algebraic and Combinatorial Proofs for It;
Applications
Probability Axioms and Expected Value 655
Probability Axioms; Deriving Additional Probability Formulas; Expected Value
Conditional Probability, Bayes� Formula, and Independent Events 662
Conditional Probability; Bayes� Theorem; Independent Events
theory of Graphs and trees 677
Trails, Paths, and Circuits 677
Definitions; Connectedness; Euler Circuits; Hamiltonian Circuits
Matrix Representations of Graphs 698
Matrices; Matrices and Directed Graphs; Matrices and Undirected Graphs; Matrices and
Connected Components; Matrix Multiplication; Counting Walks of Length N
Isomorphisms of Graphs 713
Definition of Graph Isomorphism and Examples; Isomorphic Invariants; Graph
Isomorphism for Simple Graphs
Trees: Examples and Basic Properties 720
Definition and Examples of Trees; Characterizing Trees
Rooted Trees 732
Definition and Examples of Rooted Trees; Binary Trees and Their Properties; Binary
Search Trees
Spanning Trees and a Shortest Path Algorithm 742
Definition of a Spanning Tree; Minimum Spanning Trees; Kruskal�s Algorithm; Prim�s
Algorithm; Dijkstra�s Shortest Path Algorithm
analysis of algorithm efficiency 760
Real-Valued Functions of a Real Variable and Their Graphs 760
Graph of a Function; Power Functions; The Floor Function; Graphing Functions Defined
on Sets of Integers; Graph of a Multiple of a Function; Increasing and Decreasing
Functions
Big-O, Big-Omega, and Big-Theta Notations 769
Definition and General Properties of O-, V-, and Q-Notations; Orders of Power
Functions; Orders of Polynomial Functions; A Caution about O-Notation; Theorems
about Order Notation
Application: Analysis of Algorithm Efficiency I 787
Measuring the Efficiency of an Algorithm; Computing Orders of Simple Algorithms;
The Sequential Search Algorithm; The Insertion Sort Algorithm; Time Efficiency of an
Algorithm
Exponential and Logarithmic Functions: Graphs and Orders 800
Graphs of Exponential and Logarithmic Functions; Application: Number of Bits Needed
to Represent an Integer in Binary Notation; Application: Using Logarithms to Solve
Recurrence Relations; Exponential and Logarithmic Orders
Application: Analysis of Algorithm Efficiency II 813
Binary Search; Divide-and-Conquer Algorithms; The Efficiency of the Binary Search
Algorithm; Merge Sort; Tractable and Intractable Problems; A Final Remark on
Algorithm Efficiency
regular expressions and Finite-state automata 828
Formal Languages and Regular Expressions 829
Definitions and Examples of Formal Languages and Regular Expressions; The Language
Defined by a Regular Expression; Practical Uses of Regular Expressions
Finite-State Automata 841
Definition of a Finite-State Automaton; The Language Accepted by an Automaton; The
Eventual-State Function; Designing a Finite-State Automaton; Simulating a Finite-State
Automaton Using Software; Finite-State Automata and Regular Expressions; Regular
Languages
Simplifying Finite-State Automata 858
* -Equivalence of States; k-Equivalence of States; Finding the * -Equivalence Classes; The
Quotient Automaton; Constructing the Quotient Automaton; Equivalent Automata
Properties of the real Numbers a-1
solutions and hints to selected exercises a-4
Index I-1

Download
  • ������� ������� �� magnet-������
  • 52.1 MB

Rutracker.org �� �������������� � �� ������ ����������� ������ ������������, � ���� ������������� ������ � ������������ �������������� �������� ������ �� �������-�����, ������� �������� ������ ������ ���-����

��� ���������? (��� ���������� .torrent ������ ���������� �����������)

[�������]  [��]

petrov.vas.grig

����: 12 ��� 7 �������

���������: 26


petrov.vas.grig · 17-���-19 09:33 (������ 6 ����)

  • [����������]

�����, ��������, ��� �������?
Upd: ������ �����.
�������������, ���������� "(�) 2020, 2011, 2004"
������, � ������������ �����, ��� ��� ������� "� �������" ��������� �������� �� �������

[�������]  [��]

JetHadron

����: 12 ��� 6 �������

���������: 32


JetHadron · 03-���-19 14:25 (������ 1 ����� 17 ����)

  • [����������]

petrov.vas.grig �����(�):

77044279

�����, ��������, ��� �������?
Upd: ������ �����.
�������������, ���������� "(�) 2020, 2011, 2004"
������, � ������������ �����, ��� ��� ������� "� �������" ��������� �������� �� �������

��� ������ ���������� ������������ �����. ��� ��.

[�������]  [��]

�������� ������� » ����� � ������� » ������, ������������ � ���������� ����� » ����������

Loading...

Elements Of Discrete Mathematics Pdf

Source: https://rutracker.org/forum/viewtopic.php?t=5701938

Posted by: watkinsniess1969.blogspot.com

0 Response to "Elements Of Discrete Mathematics Pdf"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel